লিমিট

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | | NCTB BOOK
1

গণিতে লিমিট (Limit) হল একটি ধারণা যা কোন ফাংশন বা ধারার একটি নির্দিষ্ট মানের দিকে এগিয়ে যাওয়ার প্রবণতাকে প্রকাশ করে। সাধারণভাবে বলতে গেলে, লিমিট একটি ফাংশন বা ধারার আচরণ নির্ধারণ করে যখন চলক (variable) একটি নির্দিষ্ট মান বা অসীমের দিকে অগ্রসর হয়।


লিমিটের সংজ্ঞা:

যদি একটি ফাংশন \( f(x) \) এর চলক \( x \) একটি নির্দিষ্ট মান \( a \) এর দিকে অগ্রসর হলে \( f(x) \) একটি নির্দিষ্ট মানের দিকে অগ্রসর হয়, তাহলে বলা হয়, \( f(x) \) এর \( x \) \( a \)-এর দিকে গেলে লিমিট হলো ঐ নির্দিষ্ট মান।

এটি সাধারণত এভাবে লেখা হয়:

\[
\lim_{x \to a} f(x) = L
\]

এখানে \( L \) হল সেই নির্দিষ্ট মান যা \( f(x) \) পৌঁছায় যখন \( x \) \( a \)-এর দিকে অগ্রসর হয়।


লিমিটের প্রয়োগ:

  • ধারাবাহিকতা নির্ধারণে: ফাংশনের একটি বিন্দুতে ধারাবাহিকতা যাচাই করতে লিমিট ব্যবহার করা হয়।
  • ডেরিভেটিভ নির্ণয়ে: ফাংশনের ঢাল বা তাৎক্ষণিক পরিবর্তনের হার নির্ধারণে লিমিট গুরুত্বপূর্ণ ভূমিকা পালন করে।
  • ইন্টিগ্রেশন ও অ্যাসিম্পটোটিক বিশ্লেষণে: লিমিট ব্যবহার করে ক্ষেত্রফল বা ভলিউম নির্ণয় করা যায়, যা অনেক ক্ষেত্রে অসীম পর্যন্ত প্রসারিত হয়।

লিমিট গণিতের একটি মৌলিক ধারণা এবং এটি ক্যালকুলাসের ভিত্তি স্থাপন করে, যা প্রাকৃতিক এবং প্রযুক্তিগত বিজ্ঞানের অনেক ক্ষেত্রে গুরুত্বপূর্ণ।

Promotion